# Drivers for the development of an animal health surveillance ontology



**Crawford Revie** 



Fernanda Dórea Ann Lindberg



Karl Hammar Eva Blomqvist



**Flavie Vial** 



An ontology defines a common vocabulary for users who need to <u>share information</u> within a domain.

It includes <u>machine-interpretable</u> definitions of basic <u>concepts</u> in the domain and <u>relations</u> among them.

#### **VeNom (Veterinary Nomeclature)**

 Different dimensions of knowledge contained in the data

| 'Squamous cell carcinoma - clitoral'                          |
|---------------------------------------------------------------|
| 'Squamous cell carcinoma - conjunctival'                      |
| 'Squamous cell carcinoma - corneal'                           |
| 'Squamous cell carcinoma - gastric (stomach)'                 |
| 'Squamous cell carcinoma - penis/prepuce'                     |
| 'Squamous cell carcinoma - oesophageal'                       |
| 'Squamous cell carcinoma - nasal sinus'                       |
| 'Squamous cell carcinoma - perineal'                          |
| 'Squamous cell carcinoma - third eyelid/nictitating membrane' |
| 'Squamous cell carcinoma - urethral'                          |
| 'Squamous cell carcinoma - urinary bladder'                   |
|                                                               |



 Different dimensions of knowledge contained in the data

#### **MeSH Terms**

Wounds and Injuries [C26]
Fractures, Bone [C26.404]

Femoral Fractures [C26.404.061] Hip Fractures [C26.404.061.425]

Femoral Neck Fractures [C26.404.061.425.500]

Wounds and Injuries [C26]

Hip Injuries [C26.531]
Hip Fractures [C26.531.750]

Femoral Neck Fractures [C26.531.750.500]

Wounds and Injuries [C26]

Leg Injuries [C26.558]

Femoral Fractures [C26.558.276] Hip Fractures [C26.558.276.425]

Femoral Neck Fractures [C26.558.276.425.500]



 Different dimensions of knowledge contained in the data









## Ontologies

Data model

- Classes
- Properties
- Instances





## Why use ontologies?

## To share common understanding of the structure of information among people or software agents





#### To enable reuse of domain knowledge

Uberon multi-species anatomy ontology

Anatomical Entity Ontology

> Foundational Model of Anatomy



Ontology for General Medical Science

Symptom Ontology

Clinical Measurement Ontology



#### To re-use domain independent knowledge



```
"@context": "http://schema.org/".
  "@tvpe": "FlightReservation".
  "reservationNumber": "OWERT0123456789".
  "reservationStatus":
"http://schema.org/Confirmed",
  "underName": {
    "@type": "Person".
    "name": "Estella Gallagher"
  "reservationFor": {
    "@type": "Flight",
    "flightNumber": "123",
    "departureAirport":
      "@type": "Airport".
      "name": " Seattle-Tacoma International
Airport".
      "iataCode": "SRA"
    "arrivalAirport":
      "@type": "Airport",
      "name": " John F Kennedy International
Airport",
      "iataCode": "JFK"
 "departureTime": "2014-04-02T10:32:00Z",
    "arrivalTime": "2014-04-02T11:45:00Z",
    "airline": {
      "@type": "Airline",
      "name": "Blue Yonder Airlines".
      "iataCode": "BY"
```



Swiss International Airlines
Flight LX 324

Tomorrow, June 4th Delayed: departing 9:00 am

Departs Zurich (ZRH)

8:30 am Terminal E Gate 27

Arrives Rome (FCO)

10:30 am Terminal 1

\_\_\_\_

Geonames ('GIS') Ontology

> FOAF ('people') Ontology

SKOS ('Thesuaral' structure) Ontology



#### To make domain assumptions explicit



#### To support research and knowledge discovery from data

Fracture of the femur

Osteochondroma of femur

All injuries of the femur?

All injuries of the LEG?



## Ontologies applied to data-driven surveillance



#### Desired functions

- Convert health data into information in real-time
- Use medical knowledge to infer surveillance relevant information from data collected for other purposes
- Provide a permenant source of term mappings that are open and can be shared/expanded by community (IRI)



### Inherent challenges to overcome

- Distributed data (not likely to be shared)
- Data non-coded or coded using different standards
- Solutions must work prospectively and retrospectively



## Sustainability of solutions

- Maintenance
- Reviews and updates
- Scalability
- Transparency
- Interoperability











## Community involvement

- Workgroups for each module/data type
- Review outputs and submit issues

- Google forum
- Github
- Home page
- Open edit book

datadrivensurveillance.org/ahso



## Challenge to 'big data' epi teams



- microdata
- JSON-LD

schema.org

- RDF
- OWL







Just when you thought it was safe to be a quantitative epidemologist





## datadrivensurveillance.org/ahso

### https://w3id.org/ahso



