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The practice of disease surveillance has shifted in the last two decades towards the intro-
duction of systems capable of early detection of disease. Modern biosurveillance systems
explore different sources of pre-diagnostic data, such as patient’s chief complaint upon
emergency visit or laboratory test orders. These sources of data can provide more rapid
detection than traditional surveillance based on case confirmation, but are less specific,
and therefore their use poses challenges related to the presence of background noise and
unlabelled temporal aberrations in historical data. The overall goal of this study was to carry
out retrospective analysis using three years of laboratory test submissions to the Animal
Health Laboratory in the province of Ontario, Canada, in order to prepare the data for use
in syndromic surveillance. Daily cases were grouped into syndromes and counts for each
syndrome were monitored on a daily basis when medians were higher than one case per
day, and weekly otherwise. Poisson regression accounting for day-of-week and month was
able to capture the day-of-week effect with minimal influence from temporal aberrations.
Applying Poisson regression in an iterative manner, that removed data points above the pre-
dicted 95th percentile of daily counts, allowed for the removal of these aberrations in the
absence of labelled outbreaks, while maintaining the day-of-week effect that was present
in the original data. This resulted in the construction of time series that represent the base-
line patterns over the past three years, free of temporal aberrations. The final method was
thus able to remove temporal aberrations while keeping the original explainable effects in
the data, did not need a training period free of aberrations, had minimal adjustment to the
aberrations present in the raw data, and did not require labelled outbreaks. Moreover, it
was readily applicable to the weekly data by substituting Poisson regression with moving
95th percentiles.

© 2012 Elsevier B.V. All rights reserved.
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Surveillance has shifted in the last two decades towards
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and Burkom, 2010). Modern biosurveillance systems are
designed to take advantage of data assumed to contain sig-
natures of healthcare-seeking behaviours, which are not as
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specific as diagnosis, but allow for more rapid detection,
and can be aggregated as syndromes. Surveillance based
on these types of data is therefore referred to as syndromic
surveillance (Centers for Disease Control and Prevention
(CDC), 2006). A recent review of syndromic surveillance
initiatives in veterinary medicine (Dérea et al., 2011) indi-
cated that opportunistic data sources are difficult to find
in animal surveillance due to the scarcity of computerized,
automatically collected data.

The secondary use of clinical animal data, whether
computerized or not, also relies on the voluntary partici-
pation of veterinarians and/or producers. One alternative
to relying on data shared voluntarily is the exploita-
tion of automatically collected laboratory submission data
(Stone, 2007). Laboratory test results have been analyzed
retrospectively to detect temporal clustering of bacterial
pathogens in public health (Dessau and Steenberg, 1993;
Hutwagner et al., 1997; Widdowson et al., 2003) and vet-
erinary medicine (Carpenter, 2002; Zhang et al., 2005).
The use of submission data, however, more properly fits
the purposes of syndromic surveillance, as test requests
are available earlier, though provide less specificity, than
testresults. Despite having lower population coverage than
clinical data, laboratory data are generally stored in com-
puterized systems, and have been available over relatively
lengthy periods of time, meaning that historical analyses
are usually possible.

When historical computerized data are available, a
key challenge involves the construction of outbreak-free
baselines, as any outbreaks will typically not be labelled,
nor will their shape and magnitude be known (Shmueli
and Burkom, 2010). Detection of abnormal behaviour in
prospective analysis is based on either modelling and
removing expected background (model-driven methods)
or comparing profiles to similar data from unaffected popu-
lations (data-driven methods) (Yahav and Shmueli, 2007;
Shmueli and Burkom, 2010). In both cases, a baseline
free of outbreaks is necessary: in the former case to cre-
ate models of expected behaviour, and in the latter to
serve as a comparison to the data being tested. Histor-
ical data can provide a baseline for temporal aberration
detection algorithms, but data quality and influence of past
outbreaks are challenges to overcome when determining
‘typical’ background behaviour against which the presence
of abnormalities can be investigated (Shmueli and Burkom,
2010).

The overall goal of this study was to carry out ret-
rospective analysis using three years of laboratory test
submissions, related to health events in cattle, made to
the Animal Health Laboratory in the province of Ontario,
Canada. These historical data were analyzed for their
potential use in syndromic surveillance. The retrospec-
tive analysis had two specific objectives. The first was
to conduct time series analysis in order to discover
explainable patterns in the data, such as day-of-week or
seasonal effects as well as global trends. The second objec-
tive was to identify a procedure that could adequately
describe the “normal behaviour” for each syndrome,
separating the background behaviour from temporal aber-
rations present in the historical laboratory test request
data.

2. Methods
2.1. Data source

The Animal Health Laboratory (AHL) is a full-service vet-
erinary diagnostic laboratory that serves livestock, poultry
and companion animal veterinarians in the province of
Ontario, Canada. The AHL is part of the University of Guelph
and is an integral part of the Ontario Animal Health Surveil-
lance Network (OAHSN).

The AHL has a Laboratory Information Management Sys-
tem (LIMS) that is primarily used for reporting the results
of diagnostic tests and for administrative purposes, but
can also be used as a data retrieval platform for surveil-
lance. Test requests are entered into the AHL database daily
(only in exceptional circumstances are tests not entered
in the computerized system on the same day that they
are received). Individual tests are recorded as unique data
entries. A common case code (submission number) is given
to all samples from the same herd submitted on the same
day. Retrospective analysis was performed on a dataset cre-
ated by extracting three years (2008-2010) of data from all
cattle sample submissions.

2.2. Case definition and syndromic groups

Individual health events were defined as one syndrome
occurrence per herd. Individual herds can be identified in
the database by the case code (a unique submission num-
ber), however it is not possible to consistently identify
repeating submissions from the same herd if received on
different days, and so recurring instances related to the
same health event are recognized as multiple events.

Syndrome classification was performed based on the
type of sample submitted and the diagnostic test requested
by the veterinarian, which are the only pieces of informa-
tion available at the time of submission. The full list of
syndromes defined by the diagnosticians involved in this
work is shown in Table 1.

Classification is first performed for each requested test.
For pathogen specific tests, a direct correspondence was
established between tests and syndromes. For instance:
rabies tests are mapped to the nervous syndrome; bru-
cellosis tests are mapped to the reproductive syndrome,;
etc. For non-specific tests, such as “bacteriological inves-
tigation”, or “histology”, text mining methods were used
to search the text entered freely by veterinarians describ-
ing the sample submitted, as well as the information from
the field “sample type” used by laboratory staff. A dic-
tionary of medically relevant words was constructed, and
their relationship to different organ systems was estab-
lished. For instance samples in which the word “lungs”
is found are classified as respiratory syndrome, but if
multiple organs from different systems are found, the
syndrome type is “systemic”. Abortion keywords have
precedence, so that for instance “foetus lungs” are clas-
sified as the abortion syndrome, rather than respiratory.
These correspondences compose a set of classification
rules. The process was automated using rule-based classi-
fication algorithms, and is described in detail in Dérea et al.
(submitted for publication).
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Table 1

Syndromic groups identified after analysis of three years (2008-2010) of diagnostic test requests to the Animal Health Laboratory, at the University of

Guelph, Ontario, Canada.

Daily monitoring Days with 0 counts Percentiles
25% 50% 75% 100%
Bovine leukaemia virus (BLV) tests 10.1% 2 4 7 33
Bovine viral diarrhoea tests 13.5% 1 3 4 11
Biochemical profile 12.4% 1 2 4 10
Clinical pathology tests (others) 12.8% 1 2 4 17
Gastro-intestinal 10.0% 2 3 5 12
Johnes disease tests 16.4% 1 2 4 12
Neospora caninum tests 25% 0.75 2 3 11
Mastitis 3.6% 5 9 12 29
Respiratory 20.9% 1 2 3 9
Nonspecific test requestsd 6.2% 2 4 5 14
Weekly monitoring Weeks with 0 counts Percentiles
25% 50% 75% 100%

Circulatory, hepatic and hematopoietic? 39.2% 0 1 2 6
Nervous 37.8% 0 1 2 5
Reproductive and abortion® 32.5% 0 1 2 8
Systemic 26.3% 0 2 4 10
Toxicology tests 29.2% 0 2 5 30
Urinary 70.0% 0 0 1 4
Others® 64.1% 0 0 1 5

2 This group merges syndromic groups which initially contained very small numbers of submissions: “circulatory”, “hepatic” and “hematopoietic”.

b Merges “reproductive” and “abortion”.

¢ Merges “skin”, “eyes” and “ears”.
d Test requests that could not be classified into any of the other groups.

Once each test request is classified into a syndrome, the
data are collapsed by syndrome and case code for each day.
This assures that multiple tests referring to the same syn-
dromic type are not counted multiple times whenrelated to
the same case. However if clues to more than one syndrome
are found within the same case all possible syndromes are
counted.

2.3. Data characterization

All statistical analyses were performed in the R envi-
ronment (http://www.r-project.org/) (R Development Core
Team, 2011). Complete data series, with counts for every
calendar day from January 1st 2008 to December 31st 2010,
were generated for each syndromic group by inserting
missing days and assigning to them a count of zero (R pack-
ages {timeDate}(Wuertz et al., 2011) and {chron}(James
and Hornik, 2010)). When median daily counts for a given
syndromic group were equal to or less than one count per
day, the merging of two or more groups was considered,
based on clinical similarities according to the opinion of
the experts involved in syndrome definition. For instance
abortion cases are classified into an individual category,
which may be merged with other reproductive cases if their
median count is not higher than one per day.

All syndromic series were further aggregated into
weekly counts. Both daily series and weekly series were
evaluated when medians were greater than one case per
day, and only weekly aggregated data was evaluated oth-
erwise. Further aggregation (for instance into monthly
counts) was not considered as a key goal of the system
being developed was early detection.

Initial characterization of the individual time series
were performed using summary statistics by day-of-week,
month and year, time plots, moving average and moving
standard deviation charts (Lotze et al., 2008).

Regression models were used to model any temporal
effects observed in the data upon analysis of summary
statistics, such as day-of-week, seasonal effects and global
linear trends. Regression models appropriate for count
data, such as Poisson regression (Lotze et al., 2007), neg-
ative binomial regression, and zero-inflated versions of
these methods (Zeileis et al., 2008) (R package {pscl}
(Zeileis et al., 2008)) were explored. Fit was assessed
individually for each model (analysis of residuals and
goodness-of-fit), and compared among models using the
Akaike Information Criterion (AIC).

2.4. Aberration removal

To address the second objective, which was to define
an outbreak-free historical baseline for each syndrome by
separating the background behaviour from temporal aber-
rations present in the historical data, two methods were
investigated.

Smoothing was attempted using Holt-Winters expo-
nential smoothing (Burkom et al.,2007; Elbert and Burkom,
2009), a method chosen due to its ability to model the
temporal effects present in the data. Initializing smooth-
ing coefficients (alpha for level, beta for trend and gamma
for seasonality) can be provided when implementing this
method. Lotze et al. (2008) suggest using «=0.4, §=0
and y=0.15 for surveillance data with seasonal compo-
nents, and « = 0.1 when there is no season component. The
seasonal component can be modelled as additive to the
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Fig. 1. Examples of time series of daily (left) and weekly (right) counts of requests for tests associated with various syndromic groups.

baseline (for each season effects of different magnitudes
are added to the time series); or multiplicative (effects are
modelled as a ratio from the baseline time series). The lat-
ter is not appropriate when there are zero-count days in
the time series, as was the case in most of the syndrome
time series evaluated here (Burkom et al., 2007).

The second method was based on the procedure used by
Tsui etal. (2001). The procedure is based on the assumption
that after fitting the entire data to a regression model, data
points above the 95% confidence interval of model predic-
tions represent data occurring within epidemic time points.
Data points above a one-sided 95% confidence interval are
removed. The regression model used by the authors was
the Serfling method (Serfling, 1963; Tsui et al., 2001), a
linear regression model based on weekly counts that intro-
duce sine and cosine terms in order to account for seasonal
waves. To explore the method for the data available in
this study, the substitution of the Serfling method with
the Poisson regression used during data characterization
was tested. Replacement of detected outliers was evaluated
using the limit of the confidence interval, and alternatively
by the expected value for that time point, based on model
predictions. To identify outliers in a Poisson model, the 95th
percentile of the Poisson distribution with mean equal to
the estimated value for each time point was used as the
threshold limit of that point. That is, for each estimated
value A;, the upper limit is the smallest integer x such that
P(L; <x)>0.95. Lastly, an assessment was carried out as to
whether repetition of the steps of model-fitting and outlier
removal, in an iterative process, would improve anomaly
elimination.

3. Results
3.1. Case definition and syndromic groups
The complete list of syndromic groups is shown in

Table 1. A choice to monitor daily only those syndromes
with median counts greater than one submission per

day was made; the remaining syndromes were grouped
into weekly counts. Syndromic groups merged into larger
groups are also shown in the table, with details provided
in the numbered footnotes. The AHL primarily operates on
weekdays, with selected emergency testing available out-
side of usual business hours. Test requests are entered in
the database daily and the date registered is that on which
the sample was received. Sample submissions assigned to
Saturdays and Sundays in the database were allocated to
the following Monday. Daily medians in Table 1 therefore
refer to the weekday median. All the time series described
are based on 5-day weeks, and 260-day years.

3.2. Data characterization

Time series for six of the syndromic groups listed in
Table 1 are shown in Fig. 1, three daily series - requests for
serological tests of Bovine Leukaemia Virus (BLV), counts
of tests related to mastitis diagnostics, and counts of tests
for respiratory diseases; and three series chosen to be
monitored weekly - test requests related to systemic dis-
eases, reproductive diseases, and toxicology tests. Mastitis
is the group with the highest daily average, the BLV series
was chosen due to the evident presence of temporal aber-
rations in the historical baseline, while Respiratory was
selected based on the assumption that it was more likely
to exhibit seasonal variation. The weekly series were cho-
sen to illustrate different weekly averages and presence of
aberrations.

3.2.1. Time series for syndromes monitored daily

All daily series showed strong DOW effects. A zoomed
view of 7 weeks at the beginning of 2010 for the Mas-
titis series is shown in Fig. 2A. Mondays are labelled in
the graph. Box-plots of the quartiles of daily counts for
the whole Mastitis series, per day-of-week, are shown in
Fig. 2B. The peak of diagnostic sample submissions on Tues-
days is a result of the large number of sample submission
through courier - because this laboratory serves the entire
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Fig. 2. Day-of-week and month effects exemplified using the mastitis series. (A) Seven-week zoomed view of the series. Mondays are labelled with “M”.
(B) Box-plots of all counts in each day of the week for the entire series (2008 through 2010). (C) Box-plots of all counts in each month for the entire series

(2008 through 2010).

province of Ontario, many samples are mailed to the lab-
oratory. Samples collected at the beginning of a week are
therefore often received on Tuesday.

Month was, for most syndromic time series, a signifi-
cant predictor in the Poisson regression model (at the 5%
significance level). Monthly box-plots are shown for the
Mastitis series in Fig. 2C. Year was not a significant predic-
tor in the Poisson model for any syndromic series but BLV
submissions. In that case, however, the effect was due to
a high number of submissions in 2008 compared to 2009
and 2010, while the number of submissions in the latter
two years was not significantly different from each other.
No global linear trend was detected in any of the time series
studied.

Moving averages and standard deviation charts using
several window sizes indicated that all series evaluated
were non-stationary. The predicted values from the Pois-
son model are shown in Fig. 3 for the BLV series, focusing
on the year 2010 for visualization purposes (model fitting
also included 2008 and 2009). No improvement (based on
the reduction in the AIC) was obtained when using neg-
ative binomial or zero-inflated models to account for the
substantial numbers of zero counts in the data. Analysis of
residuals, deviance and goodness of fit (based on Pearson
residuals) did not give reason to suspect of lack of fit to the
Poisson regression model in any of the daily series evalu-
ated. This result is restricted to the series chosen for daily
monitoring, that is, those with a daily median greater than
one submission per day.

3.2.2. Time series for syndromes monitored weekly

When counts are aggregated by week, the syndromic
time series are reduced to 157 observations, rather than
the 782 weekdays of the original daily data. Exploratory
analysis using Poisson regression and the Serfling method
(Serfling, 1963; Tsui et al., 2001) indicated that the use of
non-parametric methods, such as moving percentiles were
best suited to characterize these series.

3.3. Aberration removal

3.3.1. Time series monitored daily

The seasonal component of the Holt-Winters exponen-
tial smoothing reflected mainly the weekly effects, and no
global trend was detected. It was therefore hypothesized
that recognition of years was not relevant, and that mod-
elling performance could be improved if the period was set
torepresent each week, rather than each year. A time series
was created in which the cycles were set to 5 days, and
the Holt-Winters smoothing was reapplied. Using shorter
cycles allowed refitting of the parameters much more fre-
quently (a great number of 5-days cycles within each year
of data), resulting in the same final empirically calculated
smoothing coefficients regardless of the choice of initializ-
ing coefficients.

The Holt-Winters exponential smoothing was able to
reproduce closely the temporal effects and the random
behaviour of the data, but aberrations present in the raw
data were incorporated in the model predictions. This is
in contrast to the Poisson regression applied to all data
(global model). Because day-of-week and month were the
only predictors incorporated, the Poisson model provided
estimates that will be identical for each day of the week and
month in different years, but are closer to what is expected
in terms of baseline data.

Considering these results, Poisson regression was con-
sidered an appropriate method for modelling global
behaviour, when the main goal is to capture baseline
activity with minimal influence of temporal aberrations
present in the data, especially when these aberrations
(potential outbreaks) have not been identified. The disad-
vantage of losing some of the original variation in the data
through the application of a global model was addressed
by applying a procedure similar to that suggested by Tsui
et al. (2001), in which most of the original data is kept,
and a fitted model is used only to detect and replace
outliers.
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Applying the method of outlier removal as an itera-
tive process confirmed that the subsequent steps of model
fitting provided further aberration removal. Setting the
process to repeat iterations for as long as outliers were
detected typically required 3-4 iterations of model fitting
and outlier removal for each syndromic time series, after
which all observations fell within the 95th percentile inter-
val of the Poisson estimates.

When outliers detected using the percentile limit were
substituted by the model prediction for that data point,
rather than the limit of detection itself, an additional 1-2
iterations were necessary until no outliers were detected.

The resulting time series after applying the iterative
process of outlier removal based on Poisson regression,
for the BLV series, are shown in Fig. 4. Outlier substitution
using the upper limit of the confidence interval (Fig. 4B)
represented a better balance between removing tempo-
ral aberrations and keeping the original variation of the
original data, without over-smoothing.

3.3.2. Time series monitored weekly

As the results of the exploratory analyses indicated
that non-parametric methods were suitable for handling
weekly data, the use of moving percentiles was investi-
gated to remove temporal aberrations. In a manner similar
to moving averages, a number of observations to the left
and to the right of each value in a vector are used to
calculate the statistic — in this case a percentile. Fol-
lowing the process previously used for daily data, the
95th percentile was used to construct an upper limit for
each value, and moving windows of 10-52 weeks were
evaluated. These upper limits were used in the same iter-
ative process described for daily data, to remove temporal
aberrations.

This process applied to weekly series demonstrated
better results using the 26 week window. Using shorter
windows tended to result in inconsistent results, failing to
eliminate temporal aberrations in some series or some spe-
cific periods within a series, and over-smoothing others.
Larger windows tended to over-smooth the series, elim-
inating most of the random variation. The result of the
process based on 26 weeks moving windows is shown in
Fig. 5 for the time series of counts of test requests for sys-
temic diseases.

The iterative procedure was performed consistently for
all time seriesin Table 1, with results similar to those shown
in Figs. 4 and 5.

4. Discussion

Syndromic surveillance operates under the assump-
tion that anomalies indicative of disease outbreaks can
be detected when information is monitored continuously
(Shmueli and Burkom, 2010). Signatures of outbreaks can
be obscured in the data by explainable factors, such as day
of the week or seasonal effects, autocorrelation and global
trends (Lotze et al., 2008).

In this work three years of laboratory test requests from
the Animal Health Laboratory at the University of Guelph,
Ontario, were evaluated. The aim was to evaluate statis-
tical approaches that would account for temporal effects
in order to establish the baseline behaviour of the data for
aberration detection in real time. Cases were counted daily,
and repeating health events from the same herd are not dis-
carded. This was considered to affect the specificity of the
system, rather than sensitivity.

Once data were separated into syndromic groups, all
time series of daily counts showed strong day-of-week
effects. Even though the effect is not always consistent it
was successfully reproduced by a Poisson regression, in
which month was also a significant predictor. No global
linear trends were found. In the series of counts aggre-
gated weekly non-parametric methods such as moving
percentiles were sufficient to model the data. Very low
counts (medians are shown in Table 1) and weak effect of
month explain why modelling and/or removing temporal
effects was not animportant condition in the weekly aggre-
gated time series, and non-parametric methods could be
used.

The Holt-Winters exponential smoothing was not able
to separate the temporal aberrations from normal, back-
ground behaviour. The attempt to change the settings of
the Holt-Winters smoothing to recognize week as the data
period, rather than year, proved to be valid in simulat-
ing the day-of-week effect. However, since local regression
methods such as this adapt closely to the background varia-
tion in the data, the method will only be useful in modelling
the data once an outbreak-free baseline is available.

On the other hand, the Poisson regression model fit
to the whole data allowed all days of normal behaviour
in the data to contribute to the estimates, and therefore
the resulting estimates were closer to the expected base-
line of normal behaviour. Regression has been used in
several implemented biosurveillance systems, and it is a
natural choice when this amount of historical data is avail-
able (Bradley et al., 2005; Shmueli and Burkom, 2010). The
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Poisson regression, specifically, can be more robust than
other linear models since it does not require constant
variance (Buckeridge et al., 2005). The Poisson regression,
however, assumes variance equal to the mean of the distri-
bution of observed counts. This proved to be a reasonable
assumption for the syndromic time series evaluated in this
work, since neither a negative binomial nor zero-inflated
models indicated a better fit for the daily counts. If this
assumption is not met, models which can account for
zero-inflated distributions and/or overdispersion should be
explored (Schmidt and Pereira, 2011).

By reducing the model variables to key explainable fac-
tors, such as day-of-week and month, it was possible to
model the baseline behaviour, while preventing adapt-
ion to temporal aberrations. Removing such aberrations
from training data has been noted as a key challenge of
implementing any system for early detection of outbreaks
(Shmueli and Burkom, 2010). There are statistical methods
to identify whether outbreaks are present or not (Naus and
Wallenstein, 2006), and the use of diagnostic information
to label outbreaks has also been suggested (Ivanov et al.,
2003). However, even if outbreaks can be identified, the
problem of how to remove the outbreak signature from the
background data of normal behaviour remains. The chal-
lenge addressed in this work was that of identifying an

algorithm that could be used despite the absence of clean
training data and the lack of knowledge about the shape
and duration of any outbreaks.

When removing aberrations it is desirable to keep as
much of the original data as possible, using model predic-
tions only to replace days in which temporal aberrations
are present. To achieve this, the method proposed by Tsui
et al. (2001) was adapted by substitution of the Serfling
algorithm, more appropriate for time series with strong
seasonal effects, with a Poisson regression and applica-
tion of the steps iteratively. Fitting a global model such
as Poisson regression assumed that the covariates cho-
sen were sufficient to capture the systematic behaviour
of the data, and that their relationship to the counts is
homogeneous across the entire period (Burkom et al.,
2007).

The substitution of outliers by modelled values resulted
in over-smoothing of the data. If adopted, this would gen-
erate a baseline which would likely lead to the detection of
excessive number of false alarms when used to train aber-
ration detection algorithms. When our adjusted method
substituted outliers with the upper limit of the 95th per-
centile it proved to be efficient in removing temporal
aberrations, while keeping most of the original data, and
maintaining the day-of-week effect.

Outlier removal using a 95% percentile
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Fig. 5. Raw data of weekly counts for the systemic syndrome series (gray) superimposed by a baseline constructed after removal of temporal aberrations
(black) using an iterative process based on moving 95th percentiles, in windows of 26 weeks.
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The BLV series was used to illustrate the method, since
it had the most noticeable set of temporal aberrations in
historical data, but the method also performed well when
applied to the other daily time series. It is therefore an effi-
cient procedure for the automated cleaning of historical
data, producing baselines that can be used in prospective
analysis.

This iterative smoothing method also proved useful for
removing aberrations from syndromic data that was aggre-
gated at a weekly level, when substituting the Poisson
regression with moving percentiles. One setting (using a
26 week window and the 95th percentile) worked well for
all data series, again allowing for automated implemen-
tation. This assumes that no predictable effects, such as
seasonal patterns, are present in the data. This assumption
was met for the time series evaluated due to the decision
to aggregate sparsely occurring syndromes into weekly
counts, thus removing any day-of-week effect.

It was not the intention of this work to investigate
the reasons for the aberrations documented in the his-
torical data available. Some of these aberrations could
constitute random variation in the data, rather than true
alarming health events, in which case removal of all aber-
rations could cause over-smoothing of the data, reducing
the specificity of a system based on these developed base-
lines (“over-sensitive” detection alarms). This was however
chosen over the risk of developing a system with low
sensitivity, due to noisy baseline data. Once a baseline is
available, system implementation can be simulated retro-
spectively, that is, the system can be set to run daily in data
starting 6 months to a year before the actual date of imple-
mentation, so that a buffer, or “purging” time is used to let
the system re-adjust to real data, and in case of excessive
false-alarms adjustments to system settings can be made
to maximize sensitivity without decreasing the specificity
of the system.

This work assumed that prospective monitoring in real-
time, the next stage of a syndromic system development,
will be based on monitoring count events, as opposed
to monitoring the time between occurrences, which are
better suited for monitoring rare events. A decision was
therefore made to monitor daily counts for only those syn-
dromes with a median value greater than one, and to group
the remaining time series into weekly counts. Further
grouping into monthly counts was not considered appro-
priate for the early-detection warnings to be captured by
this system. Without such further grouping, however, some
series may be better monitored with methods specifically
developed for the monitoring of rare events. Such methods
are beyond the scope of this work, as most of the series
with low counts were a result of an attempt to classify all
laboratory tests into a syndromic group, rather than a true
interest in rare events in these data.

5. Conclusion

Successful identification of outbreak signatures in pop-
ulation data, the primary goal of syndromic surveillance,
depends on identifying and removing explainable vari-
ation from the noisy background of normal behaviour.
Three years of laboratory test request data from the Animal

Health Laboratory in Ontario were analyzed retrospectively
in order to identify such explainable factors. Day-of-week
and month effects were found to be the only relevant effects
that required removal. Poisson regression accounting for
day-of-week and month was able to capture these effects
with minimal contamination by temporal aberrations.

The results of the exploratory analyses were used to
identify temporal aberrations in the historical data. By
applying Poisson regression in an iterative manner, that
removed data points above the 95th percentile, it was pos-
sible to remove these aberrations in the absence of labelled
outbreaks, while keeping the temporal effects from the
original data. This resulted in the construction of time
series that represent the baseline pattern over a three-year
period, free of temporal aberrations. The final method pro-
posed did not require a training period free of aberrations,
had minimal adjustment to these aberrations present in the
raw data, and did not require labelled outbreaks. Moreover,
it could be readily adapted for weekly data by substituting
Poisson regression with moving 95th percentiles.
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